Postnatal Sim1 deficiency causes hyperphagic obesity and reduced Mc4r and oxytocin expression.
نویسندگان
چکیده
Single-minded 1 (SIM1) mutations are one of the few known causes of nonsyndromic monogenic obesity in both humans and mice. Although the role of Sim1 in the formation of the hypothalamus has been described, its postdevelopmental, physiological functions have not been well established. Here we demonstrate that postnatal CNS deficiency of Sim1 is sufficient to cause hyperphagic obesity. We conditionally deleted Sim1 after birth using CaMKII-Cre (alpha-calcium/calmodulin-dependent protein kinase II-Cre) lines to recombine a floxed Sim1 allele. Conditional Sim1 heterozygotes phenocopied germ line Sim1 heterozygotes, displaying hyperphagic obesity and increased length. We also generated viable conditional Sim1 homozygotes, demonstrating that adult Sim1 expression is not essential for mouse or neuron survival and revealing a dosage-dependent effect of Sim1 on obesity. Using stereological cell counting, we showed that the phenotype of both germ line heterozygotes and conditional Sim1 homozygotes was not attributable to global hypocellularity of the paraventricular nucleus (PVN) of the hypothalamus. We also used retrograde tract tracing to demonstrate that the PVN of germ line heterozygous mice projects normally to the dorsal vagal complex and the median eminence. Finally, we showed that conditional Sim1 homozygotes and germ line Sim1 heterozygotes exhibit a remarkable decrease in hypothalamic oxytocin (Oxt) and PVN melanocortin 4 receptor (Mc4r) mRNA. These results demonstrate that the role of Sim1 in feeding regulation is not limited to formation of the PVN or its projections and that the hyperphagic obesity in Sim1-deficient mice may be attributable to changes in the leptin-melanocortin-oxytocin pathway.
منابع مشابه
Oxytocin deficiency mediates hyperphagic obesity of Sim1 haploinsufficient mice.
Single-minded 1 (Sim1) encodes a transcription factor essential for formation of the hypothalamic paraventricular nucleus (PVN). Sim1 haploinsufficiency is associated with hyperphagic obesity and increased linear growth in humans and mice, similar to the phenotype of melanocortin 4 receptor (Mc4r) mutations. PVN neurons in Sim1(+/-) mice are hyporesponsive to the melanocortin agonist melanotan ...
متن کاملAblation of Sim1 Neurons Causes Obesity through Hyperphagia and Reduced Energy Expenditure
Single-minded 1 (Sim1) is a transcription factor necessary for development of the paraventricular nucleus of the hypothalamus (PVH). This nucleus is a critical regulator of appetite, energy expenditure and body weight. Previously we showed that Sim1(+/-) mice and conditional postnatal Sim1(-/-) mice exhibit hyperphagia, obesity, increased linear growth and susceptibility to diet-induced obesity...
متن کاملRare variants in single-minded 1 (SIM1) are associated with severe obesity.
Single-minded 1 (SIM1) is a basic helix-loop-helix transcription factor involved in the development and function of the paraventricular nucleus of the hypothalamus. Obesity has been reported in Sim1 haploinsufficient mice and in a patient with a balanced translocation disrupting SIM1. We sequenced the coding region of SIM1 in 2,100 patients with severe, early onset obesity and in 1,680 controls...
متن کاملGlutamate mediates the function of melanocortin receptor 4 on Sim1 neurons in body weight regulation.
The melanocortin receptor 4 (MC4R) is a well-established mediator of body weight homeostasis. However, the neurotransmitter(s) that mediate MC4R function remain largely unknown; as a result, little is known about the second-order neurons of the MC4R neural pathway. Single-minded 1 (Sim1)-expressing brain regions, which include the paraventricular nucleus of hypothalamus (PVH), represent key bra...
متن کاملLoss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol
Melanocortin receptor accessory protein 2 (MRAP2) is a transmembrane accessory protein predominantly expressed in the brain. Both global and brain-specific deletion of Mrap2 in mice results in severe obesity. Loss-of-function MRAP2 mutations have also been associated with obesity in humans. Although MRAP2 has been shown to interact with MC4R, a G protein-coupled receptor with an established rol...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 30 10 شماره
صفحات -
تاریخ انتشار 2010